Magnetic neutron diffraction

Rob McQueeney
Magnetic moment-Rare earths

- Progressive filling of 4f levels
 - Strong Hund’s rules
 - Strong spin-orbit interaction
 - Weak CEF

- Unpaired electrons
 - Total angular momentum
 \[J = L + 2S \]

\[\mu = g_J \mu_B J \approx g_J J \frac{e\hbar}{2m_e} \]
Transition metals

- **Progressive filling of 3d levels**
 - Strong Hund’s rules interactions
 - Strong CEF
 - Weak spin-orbit interaction
- **Unpaired electrons**
 - Spin moment
 - Orbital moment (quenched)

\[
\mu = g \mu_B S \approx 2S \frac{e \hbar}{2m_e}
\]
Magnetic structures

- Exchange coupling between moments leads to ordering
 - Direct exchange
 - Superexchange (insulators)
 - RKKY (metals)
 - Dipolar
- Magnetic anisotropy leads to moment direction
- Magnetic structures defined by
 - Propagation vector(s)
 - Moment size
 - Moment direction(s)

Elastic scattering - Bragg’s Law

\[2ds\sin\theta = n\lambda \]
1-D cartoons

- **nuclear structure**
 atoms separated by lattice spacing \(a \)

- **ferromagnet**
 collinear moments; commensurate

- **simple ferrimagnet**

- **simple antiferromagnet**

- **antiferromagnet with larger unit cell**

- **non-collinear antiferromagnet**

- **incommensurate antiferromagnet**
Neutron magnetism

- Spin-1/2 particle
- Magnetic moment

\[\mu_n = -\gamma \mu_N = -1.913 \frac{e\hbar}{2m_p} \]

\[\frac{\mu_n}{\mu_e} \approx \frac{m_e}{m_p} = 1/2000 \]
Dipole interaction

Interaction between neutron and electron

\[U = -\mu_n \cdot B = \frac{\mu_0 \gamma e^2}{4\pi m_e} \sigma \cdot B = \gamma r_0 \sigma \cdot B \]

\[U^{uv} = \langle u| b - pS_\perp \cdot \sigma |v \rangle \]

\[p = \gamma r_0 g S f(Q) \quad S_\perp = \hat{S} - (\hat{S} \cdot \hat{Q})\hat{S} \]

Only moment projection perp. to \(\mathbf{Q} \) will scatter neutrons

\[U^{++} = b - pS_{\perp z} \]
\[U^{--} = b + pS_{\perp z} \]
\[U^{-+} = -p(S_{\perp x} + iS_{\perp y}) \]
\[U^{+-} = -p(S_{\perp x} - iS_{\perp y}) \]
Magnetic cross-section

\[(\gamma r_0)^2 = 291 \text{ millibarns/steradian}\]

\[b^2(\text{Fe}) = 895 \text{ mb/Sr}\]
Magnetic form factor

\(f(\mathbf{Q}) \): Fourier transform of the atomic magnetization density
Magnetic structure factor is actually a vector quantity, but for collinear structure, can be simplified

\[F_M(\tau) = \sum_d \frac{1}{2} g_d \langle S_d \rangle \sigma_d F_d(Q) \exp(-W_d) \exp(i \tau \cdot d) \]

Scattering differential cross-section for \emph{unpolarized} beam

\[\frac{d\sigma}{d\Omega} = N r_0^2 (1 - \hat{\tau}_z^2) \left| F_M(\tau) \right|^2 \]

More generally

\[\frac{d\sigma}{d\Omega} = N r_0^2 \sum_{\tau} \delta(Q - \tau) \left| \hat{Q} \times \{M(\tau) \times \hat{Q}\} \right|^2 \]
1-D Cartoons

Configuration in Real Space

- a

Diffraction Pattern in Reciprocal Space

- a^*

- **nuclear Bragg peaks**

- **magnetic intensities on top of nuclear Bragg peaks**

- **half-indexed magnetic and integer-indexed nuclear and magnetic Bragg peaks**

- **half-indexed magnetic Bragg peaks**

- **quarter-indexed magnetic Bragg peaks**

- **quarter-indexed magnetic Bragg peaks**

- **magnetic satellites**

- **nuclear intensities only**

- **nuclear and magnetic intensities**

- **magnetic intensities only**
Determine magnetic structure

- **Prescription**
 - Measure the magnetic propagation vector(s)
 - Magnetic space group
 - Limits the possible structures
 - You need to know the crystal structure
 - Determine moment direction(s) (refinement)

- **Potential problems**
 - Magnetic domains
 - Crystallographic twinning
 - Multiple wavevectors/multi-q structures
In 1949, Clifford Shull observed additional magnetic reflections in MnO which led to the confirmation of antiferromagnetism.

Shull and J. S. Smart, Phys Rev 76, 1256 (1949).

Table II. Comparison between observed MnO antiferromagnetic intensities and those calculated for various models of magnetic orientation with respect to crystallographic axes.

<table>
<thead>
<tr>
<th>Calculated for various oriented models</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>Observed (neutrons/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(111)</td>
<td>1038</td>
<td>0</td>
<td>1560</td>
<td>1072</td>
</tr>
<tr>
<td>(311)</td>
<td>460</td>
<td>675</td>
<td>...</td>
<td>308</td>
</tr>
<tr>
<td>(331)</td>
<td>129</td>
<td>109</td>
<td>...</td>
<td>132</td>
</tr>
<tr>
<td>(511)</td>
<td>54</td>
<td>24</td>
<td>...</td>
<td>70</td>
</tr>
<tr>
<td>(333)</td>
<td>54</td>
<td>24</td>
<td>...</td>
<td>70</td>
</tr>
</tbody>
</table>
Cone structure of Er

- incommensurate
- Alternating cone structure
- Spin slips from magnetoelastic effect

FIG. 6. Diffraction pattern from the $q=(5/21)c^*$ phase at 0 T and 10 K along the [001] direction. The insert shows the first eight layers of the basal-plane spin-slip model for this structure.
Cone structure of Er
Neutron polarization analysis

- Why use polarization?
 - Separate magnetic/nuclear scatt. (q=0 structures)
 - Refine structure determination (e.g. canting)
 - Separate coherent/incoherent (diffuse scattering, mag. densities)

\[
\begin{align*}
U^{++} &= b - p S_{\perp z} \\
U^{--} &= b + p S_{\perp z} \\
U^{+-} &= -p (S_{\perp x} + iS_{\perp y}) \\
U^{-+} &= -p (S_{\perp x} - iS_{\perp y})
\end{align*}
\]
Instrumentation

Monochromator

Crystal magnetization

\[U^{++} = b - pS_{\perp z} \]

\[U^{--} = b + pS_{\perp z} \approx 0 \]

Cu$_2$MnAl (111) (Heusler)

Spin flippers
Spin-flip vs. Non-spin-flip

Useful modes

- \(P \parallel Q \) (in-plane polarization): All magnetic scattering is SF
- \(P \perp Q \) (vertical polarization): magnetic scattering can be SF & NSF
Polarized experiments

Separation of magnetic/nuclear Paramagnetic scattering

Polarization @ pulsed source

Heusler mono won’t work for wide angle scattering

3He polarizers
Further references

- **Magnetic neutron scattering**

- **Structural refinements**
 - GSAS http://www.ncnr.nist.gov/xtal/software/gsas.html
 - FullProf http://www.ill.eu/sites/fullprof/

- **Magnetic space groups**
 - Izyumov, Ozerov, “Neutron diffraction of magnetic materials”
 - Sarah program (representational analysis)